摘要

针对实时系统的在线最优控制策略学计算开销高的缺点,提出基于经验回放和Q-Learning的最优控制算法。采用经验回放(experience replay,ER)对样本进行重复利用,弥补实时系统在线获取样本少的不足;通过Q-Learning算法并采用梯度下降方法对值函数参数向量进行更新;定义基于经验回放和Q-Learning的ER-Q-Learning算法,分析其计算复杂度。仿真结果表明,相比Q-Learning算法、Sarsa算法以及批量的BLSPI算法,ER-Q-Learning算法能在有限时间内平衡更多时间步,具有最快的收敛速度。

全文