摘要

极化SAR图像分类是目前遥感领域研究热点之一,它为地物信息获取和地物分类提供了新方法。文中对四川省彭州石化地区利用ALOS PALSAR全极化数据进行支持向量机(SVM)分类。试验中首先获得极化总功率,然后对数据进行Cloude-Pottier极化分解,再基于相干矩阵的特征值,提取特征参数香农熵和雷达植被指数。组合这些极化特征对影像进行SVM的分类,并与基于Freeman-Durden极化分解的SVM分类和Wishart监督分类进行比较。试验结果表明:本文采用的极化特征组合信息之间得到相互补充,分类结果效果较好,Kappa系数为97.14%,相对另两种方法的Kappa系数分别提高了5.26%和27.20%。

全文