摘要

本文以北京昌平为研究区域,针对农作物的分类特点,结合ASAR的VV极化、新型PALSAR的HH、HV极化以及TM的多光谱数据进行细化分类。首先,使用MIMICS模型对该地区主要农作物玉米和果林的后向散射特性进行了模拟分析,并跟SAR实际观测数据进行对比。在充分认识农作物后向散射的机制和数值大小关系的基础上,构建一种基于BP神经网络和正态模糊分布函数的模糊神经网络模型,结合双频多极化SAR数据和多光谱数据进行农作物类型的识别。研究结果表明:双频多极化SAR数据能够提供有利于作物类型识别的信息,并产生重要的可分离性,其结合多光谱数据进行作物类型识别是一种有效的途径,具有较大的优势。

  • 单位
    中国科学院遥感应用研究所; 遥感科学国家重点实验室; 北京师范大学; 农业部