摘要

针对传统无迹卡尔曼滤波器存在跟踪精度低、数值稳定性差、鲁棒性弱等缺点,提出了一种基于球型无迹变换的自适应平方根UKF滤波算法(Adaptive Square Root UKF Filtering Algorithm Based on Spherical Unscented Transform,ASRS-UKF)。该算法在标准的平方根UKF算法上,首先改用了球型无迹变换对权系数以及sigma点进行计算选取;其次改进了平方根UKF中平方根矩阵的分解方法;同时在预测误差协方差矩阵中引入了自适应衰减因子。最后,通过将该算法同平方根UKF以及强跟踪UKF算法进行仿真对比,结果表明,ASRS-UKF算法在减少计算量、加快计算速度的同时还提高了滤波精度和稳定性,而且对于系统模型匹配不佳的情况下,仍具有良好的跟踪性能。

  • 单位
    中国人民解放军空军预警学院