传统的灰色GM(1,1)和BP神经网络模型存在对原始序列依赖高,收敛速度慢等缺点.将分数阶累加的思想引入GM(1,1)模型,再用逐层训练算法改进传统的BP神经网络.基于我国2010-2014年的电力数据,构建分数阶GM(1,1)与BP神经网络组合模型,预测2015年和2016年的总发电量.实证结果表明,该组合模型比GM(1,1)模型,分数阶GM(1,1)模型以及GM(1,1)与BP神经网络组合模型具有更好的数据拟合效果,更高的预测精度.