摘要

在图像采集过程中,由于拍摄对象运动或相机自身运动造成的图像模糊对于后续的高级视觉任务会产生很不利的影响。针对当前深度学习图像去模糊方法不能兼顾去模糊效果和效率的问题,本文提出了一种多尺度循环注意力网络,使用深度可分离卷积降低参数量,改进注意力模块合理分配计算资源,对卷积层进行密集型连接提高参数利用效率,引入边缘损失提升生成图像边缘细节信息。经过实验验证,所提方法具有良好的泛化性能和鲁棒性,在Lai数据集和K?hler数据集上的SSIM和PSNR较近年典型方法的最佳效果分别提升了约1.15%、0.86%和0.91%、1.04%,在GoPro数据集上的平均单帧运行速度较同类方法提升约2.5倍。

  • 单位
    天津大学; 精密测试技术及仪器国家重点实验室