摘要

近年来生成对抗网络在计算机视觉领域快速发展,尤其在图像数据生成领域占据着主导地位。图像翻译是在不改变图像内容的前提下,将图像转换成另一领域的图像,类似语言翻译。研究总结了基于生成对抗网络的图像翻译方法的最新进展,详细介绍并对比了近两年来的各个方法(Pix2Pix、Cycle GAN、Star GAN等)基本原理与网络框架结构,最后,探讨了在相关领域的应用前景、目前存在的问题以及后续发展趋势。

全文