摘要

为了在牦牛养殖过程中对牦牛实现精确管理,需要对牦牛的身份进行识别,而牦牛脸识别是一种可行的牦牛身份识别方式。然而已有的基于神经网络的牦牛脸识别算法中存在牦牛脸数据集特征多、神经网络训练时间长的问题,因此,借鉴迁移学习的方法并结合视觉几何组网络(VGG)和卷积神经网络(CNN),提出了一种并行CNN(Parallel-CNN)算法用来识别牦牛的面部信息。首先,利用已有的VGG16网络对牦牛脸图像数据进行迁移学习以及初次提取牦牛的面部信息特征;然后,将提取到的不同层次的特征进行维度变换并输入到Parallel-CNN中进行二次特征提取;最后,利用两个分离的全连接层对牦牛脸图像进行分类。实验结果表明:Parallel-CNN能够对不同角度、光照和姿态的牦牛脸进行识别,在含有300头牦牛的90 000张牦牛脸图像的测试数据集上,所提算法的识别准确率达到91.2%。所提算法可以对牦牛身份进行精确识别,从而帮助牦牛养殖场实现对牦牛的智能化管理。

  • 单位
    成都希盟泰克科技发展有限公司; 重庆大学