摘要

针对多类别目标检测在特定场景中数据样本有限的情况,为进一步提高机器人系统中轻量级神经网络对小型物体识别的准确率和稳定性,提出了一种基于机器人操作系统(ROS)的目标状态识别模块。首先,考虑到嵌入式设备的算力限制,目标识别模型采用轻量级的网络YOLO-tiny作为主要架构,并在YOLO-tiny中引入RFB,提出了YOLO-tiny-RFB模型。随后,基于MobileNet对旋钮开关的多种状态实现精准分类。最后,设计数据关联规则,通过图像配准及交并比(IOU)计算等算法使识别模块完成同一场景多次识别结果的融合,从而使用户能够对不同时刻各表计的状态进行追踪。实验结果表明,相较于YOLO-tiny,YOLO-tiny-RFB模型在少量增加模型计算量的情况下,在构建的电站仪器识别数据集上,其目标识别平均精度均值(mAP)提升了17.9%,达到了82.4%。在旋钮数据分布极端不均衡的情况下,通过引入多种数据增广方法使模型的平均准确率达到了90.7%。所提出的目标检测模块和状态识别网络模型能够有效、准确地完成各类仪器的状态识别,同时能够对仪器状态的识别结果在时间跨度上进行融合。