摘要

随着平安城市项目的不断推进,我国大部分城市已经实现监控全覆盖,并且每天产生海量的监控视频,利用人工智能的方式实现监控视频的自动化处理是目前待解决的问题。针对上述问题,本文提出一种基于C3D和CBAM-ConvLSTM(convolutional block attention module-convolutional long short-term memory network)的视频场景分类算法,对监控中的犯罪事件进行有效分类。首先,使用C3D网络和注意力机制提取监控视频的局部空间特征和局部时间特征;然后,将提取的视频特征序列输入到CBAM-ConvLSTM中提取视频的全局空间特征及全局时间特征;最后,根据全局特征使用分类器对输入视频进行犯罪事件分类。实验在自建的犯罪事件数据集Crimes-mini和公开的暴力行为数据集Hockey两个数据集上进行验证,犯罪事件分类的准确率可达92.19%、F1值可达90.40%;暴力行为分类的准确率可达99.5%、F1值可达99.5%。测试结果表明,论文提出的方法能够较有效地对监控视频中的犯罪事件、暴力行为进行分类。