摘要

缺失数据的填补是所有数据挖掘任务中非常关键的步骤。由于电力市场的复杂性,且电价的影响因素众多,造成电价数据在采集的过程中极容易产生有缺失值的现象,进而会影响到电价预测模型的建模效果。论文针对缺失电价数据,提出了一种马尔可夫链蒙特卡洛填补法(Markov Chain Monte Carlo,MCMC),并和常见的全条件定义法(Fully Conditional Specification,FCS)、MICE填补法在多种维度下进行了对比,实验证明MCMC填补方法在缺失电价数据填补上有一定的优势。