摘要
目前,解决视频分类问题比较典型的方法是使用深度学习方法.该文设计了一种新的神经网络结构用于解决视频分类问题同时使用了交叉熵损失函数和一些减少神经网络过拟合的方法.网络结构采用了3D卷积神经网络结构,这是由于3D卷积神经网络相比2D卷积网络可以同时处理图像时域信息和图像空间信息,保留输入信息的时间特征.我们将视频文件通过各种手段,转化为图像帧的形式,放入该文设计的3D卷积神经网络中学习和训练,最后通过分类器对图像的的种类进行划分,得到每个数据分类概率的结果.与之前的C3D网络相比我们增加了网络的深度,优化了网络结构,并通过实验验证了改进的有效性.
- 单位