摘要

为解决APO算法只遵循一种运动规则,过程单一,多样性较差,易使算法陷入局部最优的不足,借鉴精英学习策略,提出了分组精英学习策略对APO算法改进。该算法对种群个体进行分组,组内个体单独进化若干代,按适应值排序后选择最好的若干个体作为精英个体,精英个体即为组间个体,进行组间搜索,同时组内个体围绕各自精英个体局部精细搜索寻优,并引入反向学习和种群多样性指标动态调整各组个体的运动趋势,使个体间相似程度增大,寻找潜在的较好解,同时对组内组间不同个体遵循不同的作用力规则,有效地保持种群多样性,通过14个测试函数与APO算法比较,实验结果表明,该算法是有效的,在种群多样性与解的精度上较优。