摘要
引入反向传播(BP)神经网络法,首先择取玻璃面板关键部位的25种动力响应参数、动力特性参数以及隐框玻璃幕墙尺寸以归类神经网络数据库。采用非线性弹簧单元模拟结构胶本构行为及其组合局部脱胶状态,采用有限元方法对不同脱胶状态的隐框玻璃幕墙单元进行了拉压状态下的参数化分析,量化描述了12 545种工况下各脱胶状态,并建立训练数据库。采用反向传播神经网络方法训练检验了数值模拟样本并校验预测精度。结果显示采用本方法可以较好预测隐框玻璃幕墙的组合脱胶状态。
-
单位海洋工程国家重点实验室; 上海交通大学; 建筑工程学院