摘要
目的 采用Meta分析评价基于CT的机器学习模型(ML)在鉴别诊断难辨别肾良性肿瘤与肾细胞癌的价值。方法 检索PubMed、The Cochrane Library、Web of Science、Medline、CNKI、万方数据库自建库至2022年3月发表的有关基于CT的ML模型鉴别诊断难辨别的肾良性肿瘤(肾嗜酸细胞瘤、肾乏脂肪血管平滑肌脂肪瘤)与肾细胞癌的中英文文献。采用Stata 14.0、RevMan 5.4、meta-Disc 1.4软件进行Meta分析,计算纳入文献的合并敏感性、合并特异性、阳性似然比、阴性似然比和诊断价值比,绘制总受试者工作曲线(SROC),计算曲线下面积(AUC)。将测试集数量、模型验证策略、学习模型种类进行亚组分析,采用Meta回归分析非阈值效应引起的异质性。结果 共纳入12项文献,合并敏感性、特异性、阳性似然比、阴性似然比、诊断比值比分别为0.76(95%CI:0.68~0.83)、0.84(95%CI:0.78~0.89)、4.9(95%CI:3.5~7.0)、0.28(95%CI:0.21~0.37)、18(95%CI:11~28),绘制SROC曲线,AUC值为0.87,Meta回归显示,测试集数量、模型验证策略、学习模型种类对诊断结果产生的差异无统计学意义。Deek’s漏斗图评估提示无发表偏倚,P=0.264。结论 基于CT的ML模型鉴别诊断难辨别肾良性肿瘤与肾细胞癌时的敏感性、特异性及AUC值均较高,具有临床推广应用的潜力。
-
单位新疆医科大学第一附属医院