摘要
针对输电线路巡检中可能出现的裂化、老化、腐蚀、破损等诸多缺陷的情况,为保证输电线路运行的安全和稳定,文中开展了基于YOLOv5的电力巡检图像缺陷识别研究。在YOLOv5算法的基础上,结合电力巡检图像特点,采用CIOU_Loss作为Bounding box的损失函数,使其具有更快、更好的收敛效果;选用DIOU_NMS用于NMS处理,提高对遮挡重叠目标的识别精度;同时,在对数据集进行分类处理后,采用"分别训练、统一推断"的方法,冻结部分网络层权重来训练网络模型。实验结果显示,基于YOLOv5算法模型可以有效地识别电力巡检图像缺陷情况。
-
单位国网四川省电力公司电力科学研究院; 国网四川省电力公司乐山供电公司; 清华大学; 清华四川能源互联网研究院