摘要
修正的非线性薛定谔方程(MNLS方程)与导数非线性薛定谔方程(DNLS方程)是两个紧密相关且完全可积的非线性偏微分方程.该文通过Hirota双线性导数变换方法,首先求得MNLS方程在平面简谐波背景下的空间周期解,即Akhmediev型呼吸子解,再通过长波极限得其Rogue波解.根据简单的参数归零法使之自然地约化为DNLS方程的Rogue波解,并借助于一个积分变换将其变换为Chen-Lee-Liu方程的Rogue波解.文章还简要讨论了MNLS方程和DNLS方程在非局域情形整体解的存在性问题.