摘要

煤矿生产"减人提效"的发展趋势使保障工人安全愈发重要,针对当前矿工异常行为检测方法数据量大、鲁棒性不强的问题,提出了一种离散姿态感知量结构化的矿工异常行为识别方法。采用卡尔曼滤波技术优化基于九轴姿态传感器获得的行为感知信息,利用采样窗口截取行为信息后,依姿态感知量轴向结构化为三通道RGB行为图像,结合所设计用于提取时空特征的CTFRN模型,精确提取拟识别5种矿工行为的时空特征,以低运算量、高鲁棒性特点监测矿工异常行为。与其他模型对比结果表明,所提方法较准确率更高,可达99.3%。所设计系统及识别方法可用于实际环境中矿工异常行为实时监测,保障矿工生命安全。

全文