摘要

利用沪深300股指2018年11月5日-2018年11月12日1分钟数据,基于马尔可夫蒙特卡罗(MCMC)模拟的贝叶斯方法,采用随机波动模型(SV)对我国股市分钟高频数据波动性进行了实证研究,并利用DIC准则进行模型拟合比较.结果表明,沪深300股指收益率序列具有尖峰,厚尾,聚集性等特征,且随机波动模型对于1分钟高频数据的拟合效果优于5分钟数据,标准随机波动模(SV-N)更适合1分钟高频数据.