摘要
随着可穿戴设备的日益普及,人的上肢行为数据急剧增长,而自然场景下的人手分割研究较少。针对现有的算法对手工设计特征、像素级标签、设备、环境等的依赖,造成的精度有限或设备、人工标注成本较高的问题,提出一种弱监督人手分割算法,并将其应用到人手操作行为分割中。在像素级标签的源数据集上,利用全卷积神经网络(FCN)预训练。在只有类别标签的目标数据集上,实现基于超像素的局部-全局一致性学习的分割优化,进而实现FCN网络训练和分割优化的交替迭代。使用全连接条件随机场(CRF)进行后处理。提出基于边界框的弱监督分割,以及半监督分割方法。与其他方法的对比实验表明,该方法具有较高的召回率和区域交叠率。
-
单位中国科学院自动化研究所; 复杂系统管理与控制国家重点实验室