提高车道水平定位精度是智能交通系统发展的重要技术之一。本文提出了一种新的车道级定位方法——时空邻近卷积神经网络(STP-CNN),利用时空附近(STP)动态细化候选匹配道路,再进一步采用个性化卷积神经网络(CNN)自适应识别最优匹配车道。该方法通过优化集成GPS、车速和惯性测量单元等参数,实现了厘米级和车道级车辆位置的平滑估计。试验结果验证了该方法的可行性和有效性。