摘要

针对大坝变形监测中存在的大量小样本时间序列所具有的强非线性特性,引入组合建模的思想,综合应用ARIMA时间序列模型和BP神经网络模型实现了小样本大坝变形监测数据序列的分析,即先利用ARIMA时间序列模型对大坝变形监测数据进行拟合和预测,然后依据时间序列残差建立BP神经网络模型对残差进行预测,最后将两者结合以获得大坝变形的预测。实例分析表明,ARIMA-BP组合模型较单一模型的预测精度高,预测值更接近实测值。

  • 单位
    河海大学; 水文水资源与水利工程科学国家重点实验室; 浙江省水利水电勘测设计院; 江苏省水利科学研究院