摘要

肝细胞癌(HCC)是最常见的肝脏恶性肿瘤,其中HCC分割和病理分化程度预测是手术治疗和预后评估过程中的两个重要任务。现有方法通常独立地解决这两个问题,没有考虑两个任务的相关性。本文提出了一种多任务学习模型,旨在同时完成分割任务和病理分化程度分类任务。本文所提模型由分割子网和分类子网构成:在分类子网中提出了一种多尺度特征融合方法来提高分类精度;在分割子网中设计了一种边界感知注意力,用于解决肿瘤过分割问题。本文采用动态权重平均多任务损失,使模型在两个任务中同时获得最优的性能。研究结果显示,本文方法在295例HCC患者上的实验结果均优于其它多任务学习方法,在分割任务上戴斯相似系数(Dice)为(83.9±0.88)%,同时在分类任务上的平均召回率为(86.08±0.83)%,F1分数为(80.05±1.7)%。该结果表明,本文提出的多任务学习方法能够同时较好地完成分类任务和分割任务,可为HCC患者的临床诊断和治疗提供理论参考。