摘要
针对目前湿地信息提取中存在的“同物异谱”、“同谱异物”问题,以黄河三角洲自然保护区为实验区,采用在信息提取方面具有优势的典型相关森林算法,将Sentinel-1A雷达影像和Sentinel-2A多光谱影像作为基础数据,考察分别应用多光谱影像、合成孔径雷达(Synthetic Aperture Radar, SAR)和多光谱二者综合、SAR纹理特征以及植被指数对湿地信息提取的效果和适用性。研究结果表明:(1)基于Sentinel-2A多光谱影像,在分类方法上,典型相关森林(canonical correlation forest, CCF)的总体精度最高,达到94.32%,与支持向量机和随机森林分类算法相比分别提高了6.55%和5.47%;(2)基于Sentinel-2A多光谱影像和Sentinel-1A后向散射系数的CCF总体精度达到了94.89%,与只利用多光谱影像相比, 3种算法的总体精度和Kappa系数均得到了提升;(3)在SAR和光学联合的基础上加入SAR纹理特征后总体精度和Kappa系数均略有下降,分别为94.72%和0.935 3;(4)在SAR和光学联合的基础上加入归一化差分植被指数(NDVI)、比值植被指数(RVI)、差值植被指数(DVI)、归一化差分红外指数(NDII)和差分红外指数(DII)5种植被指数后,总体精度达到了最高为95.35%, 7种地物的生产者精度有所提高,有效提高了对黄河三角洲湿地信息的提取能力。实验结果可为黄河三角洲湿地的合理开发和有效保护提供科学支持。
-
单位中国石油大学(华东); 青岛市勘察测绘研究院