摘要
采用文本挖掘技术,对上市公司年报中的管理层讨论与分析(MD&A)内容进行文本分析,从文本相似度、文本可读性、文本语调以及管理层预期的角度构建了MD&A评价体系。通过构建代价敏感GBDT(csGBDT)模型,考察多维管理层讨论与分析指标对企业违约预测的影响,并进一步分析了对企业违约状态有重要影响的MD&A指标及其对违约状态作用的边际效应。研究表明:(1)MD&A指标可以作为替代性数据源准确预测上市公司违约状态;MD&A指标相比传统违约预测变量的预测效果较差;MD&A指标在传统违约判别指标基础上提供了额外的信息含量;csGBDT模型显著提高了对企业(尤其是对违约企业)的判别能力,在违约预测的大数据方法中具有明显优势。(2)在众多管理层讨论与分析指标中,对企业违约有重要影响的MD&A指标依次是,与前一年相比,文本相似度、词汇总量、情感语调2、词汇总量/句子数量、情感语调1和管理层是否发出业绩预测。本文将企业违约预测的研究边界从结构化数据拓展到非结构化文本数据,有助于抑制信息不对称导致的企业违约风险。
-
单位大连理工大学; 经济管理学院