摘要

为了提高新闻话题聚类精度,论文提出一种基于Word2Vec的改进密度峰值聚类算法。首先基于Word2Vec提出一种新闻文本的向量表示方法,然后针对密度峰值聚类算法存在的问题,提出一种基于KNN改进的密度峰值聚类算法。该算法首先基于KNN计算样本的局部密度,然后通过最小二乘法线性拟合选取初始聚类中心并对剩余样本进行指派形成聚类结果。在搜狐新闻数据集上的实验结果验证了该算法的有效性。