摘要

提出了基于注意力机制的多尺度卷积神经网络(Multi-scale and Attentive Convolutional Neural Network, MACNN)进行轴承故障分类,该模型以一维Resnet18网络结构为主体,卷积模块采用残差模块和空洞卷积并行方式以达到扩大感受野、避免特征信息的丢失的目的。同时,利用注意力机制可以自动提取有用特征的能力,将模型提取特征作为输入送入注意力机制模块,进一步提高模型故障分类能力。此外,采用边界平衡生成对抗网络(Boundary Equilibrium Generative Adversarial Networks, BEGAN)模型对故障数据增强,改变不平衡数据集的比例,增加数据集样本数量,降低MACNN模型的过拟合,提高诊断的准确率。在帕德博恩轴承数据集(Paderborn University Dataset,PU)上验证MACNN模型,实验结果表明,该模型在特征提取和故障分类方面都表现出了良好的性能,优于当前主流模型。

全文