摘要
如今,工业设备不断向智能化、大型化发展,伴随着设备故障日益复杂多样,如何快速、准确地诊断故障成为一个难题。通过研究,提出以大数据技术Hadoop为平台,基于兴趣属性列的改进的fp-growth算法作为数据挖掘方法,来实现工业设备的故障诊断。实验以工业齿轮箱为例,首先选取两部分数据分别作为训练数据和测试数据,在预处理阶段对训练数据进行空值处理、维度相关性分析以及抽样离散化数据;其次提出基于兴趣属性列的改进的并行fp-growth算法,从训练数据中挖掘出属性列与故障之间的关联规则;最后通过测试数据验证关联规则,证明了改进方法的可行性。实验结果表明,基于兴趣属性列改进的并行fp-growth算法能够在保证准确率的情况下进行快速故障诊断。
- 单位