摘要
为提高腐蚀管道剩余强度的预测精度,提出引入弹性梯度下降法改进BP神经网络,并融合改进海鸥优化算法(ISOA),构建腐蚀管道剩余强度预测模型。关于改进BP神经网络模型的参数寻优,首先采用Cat混沌映射初始化改进海鸥优化算法(SOA)初始种群的分布,提升寻优能力,优化SOA的搜索方向和攻击形式,增强其全局搜索能力并提高收敛速度,然后用ISOA对弹性BP神经网络(RBPNN)模型中的权值和阈值进行寻优,最后构建ISOA-RBPNN预测模型。以管道爆破数据为例,利用MATLAB进行仿真模拟,并与PSO-BPNN模型和IFA-BPNN模型预测结果进行对比分析。研究结果表明:ISOA-RBPNN模型的各项评价指标均优于其他2个模型,预测结果较实际值误差更小,在预测腐蚀管道剩余强度领域具有更好的性能,可为后续研究腐蚀管道剩余寿命和制定维修策略提供参考依据。
- 单位