摘要
为提高分类受限玻尔兹曼机(classification restricted Boltzmann machine,ClassRBM)有限的学习能力,提出一种基于重构误差的学习助推策略,提升ClassRBM的分类性能。重构误差是模型生成的数据与原始数据之间的差异,其会影响模型的性能。通过设置不同的重构误差阈值,选择重构误差超过阈值的原始数据对强化模型进行训练。测试时,统计测试数据集中被ClassRBM分错,且重构误差超过阈值的测试数据,如果存在这样的测试数据,错分数据采用强化模型的分类结果。在不同数据集上的测试结果表明,提出策略能提升ClassRBM的性能。
- 单位