摘要

水是一种有限的资源,对农业、工业乃至人类的生存都是必不可少的,良好的水环境是可持续发展的重要保障。对水质信息的科学监测,是实现水资源优化配置与高效利用的基础。联合国环境署(UNEP)与世界卫生组织(WHO)指出,应当加强发展中国家的水质监测网络,包括数据质量的保证和分析能力的提高。光谱法作为一种新兴的水质分析方法,相比传统的化学水质监测方法,具有"响应速度快、多参数同步、绿色无污染"的特点。传统单波长、多波长的线性模型依赖于水体对特定波长的吸收特征,不适用于多组分混合溶液且普适性较差。因此,提出了一种基于IERT的非线性全光谱定量分析算法,建立适用于多组分混合溶液浓度预测模型,达到利用全光谱信息来预测浓度信息的目的。利用实验室配置的COD, BOD5和TOC多组分混合溶液与NO3-N、浊度、色度多组分混合溶液作为实验样本,使用光谱仪采集样本的光谱曲线,通过全光谱数据进行浓度预测实验,结果显示,对于COD, BOD5和TOC多组分混合溶液,本算法对于三种组分的决定系数(R2)分别为0.999 3, 0.991 4和0.999 3,均方根误差(RMSE)分别为0.024 4, 0.057 7和0.000 4;对于NO3-N、浊度、色度多组分混合溶液,决定系数(R2)分别为0.983 4, 0.868 4和0.981 0,均方根误差(RMSE)分别为0.100 5, 0.326 4和0.120 2。通过对比本算法与偏最小二乘(PLS)、支持向量机回归(SVR)、决策树(DT)、极端随机树(ERT)对于同一组数据的实验结果,表明:在两组多组分混合溶液的实验中,本算法对于其中各组分的决定系数(R2)均为最优,相比于其他对比算法均方根误差(RMSE)均有大幅减少。本算法可利用光谱信息对多组分混合溶液进行定量分析,在计算时间相当的情况下,可有效的提高浓度预测精度,减少定量分析的均方根误差,可为光谱法水质监测提供一种新的有效途径。