一种基于经验模态分解的时间序列预测方法

作者:马宇红; 强亚蓉; 杨梅
来源:西北师范大学学报(自然科学版), 2020, 56(01): 27-34.
DOI:10.16783/j.cnki.nwnuz.2020.01.004

摘要

针对来源于实际问题的时间序列非线性、非平稳、多尺度复合的特点建立了一种基于经验模态分解(EMD)的ARIMA时间序列预测模型,即EMD-ARIMA模型.首先,借助经验模态分解将时间序列分解为多个不同时间尺度的内在模函数和一个趋势项,并确定每个内在模函数的季节性趋势;其次,对每个内在模函数使用季节性ARIMA模型进行预测,对趋势项使用趋势移动平均模型进行预测;最后,将所有内在模函数和趋势项的预测结果进行复合得到原时间序列的预测结果.数值实验结果表明,EMD-ARIMA方法能够揭示真实时间序列内在的多尺度复合特征和季节性变化规律;与经典的ARIMA模型和人工神经网络(ANN)模型相比,EMD-ARIMA模型明显提高了预测精度,因而是一种可靠的非线性、非平稳时间序列预测方法.