摘要
氮是植物生长发育过程中必需的营养元素之一,快速准确地获取其含量对大田农作物监测和管理有重要意义。采用无人机(UAV)搭载多光谱传感器对田间荞麦冠层叶片氮含量(Leaf Nitrogen Content,LNC)进行定量化估测,为荞麦叶片的信息化管理提供理论依据。试验选用不同荞麦品种为研究对象,通过无人机于荞麦开花期和灌浆期获取多光谱影像并同步采集荞麦冠层叶片的LNC,分别提取了5个波段下的反射率,选用与叶片LNC相关的12个植被指数进行皮尔逊(Pearson)相关性分析,选取17个光谱变量中相关性较高的特征变量与实测LNC进行PLSR、SVM和BPNN回归建模。结果表明,适量施用叶面硒肥可促进叶片吸收氮素从而增加LNC,过量硒肥不能持续提高LNC。G、R、NIR、NDVI、RDVI、RVI、SAVI、NLI、OSAVI、GRVI和LNC相关性较高,最高为GRVI,达到了0.824。采用BP神经网络建立的回归模型表现最优,盛花-灌浆期预测集决定系数(R2)为0.828,均方根误差(RMSE)为2.172,验证集R2为0.939,RMSE为1.100,RPD为4.587。因此,无人机多光谱遥感技术可实现大田尺度的荞麦冠层叶片LNC估测。
- 单位