前后部项约束关联规则并行化算法

作者:孟月昊; 冯文; 林荣霞; 陈铭师
来源:计算机时代, 2021, (08): 1-7.
DOI:10.16644/j.cnki.cn33-1094/tp.2021.08.001

摘要

为了解决大规模数据环境下挖掘出的关联规则过多,用户需要耗费大量时间在这些关联规则中寻找自己感兴趣规则的问题,提出了一种基于Map/Reduce并行化编程模型的前后部项约束关联规则挖掘算法FRPFP。通过对用户感兴趣的规则前后部项进行标记和分组挖掘,并在各分组挖掘过程中根据标记的规则前后部约束项,对事务集进行压缩,从而筛选出有效的频繁项集,最终得到含有用户感兴趣项的关联规则。该算法在Spark框架中实现,实验结果表明,该算法能够有效地减少冗余规则的产生,计算开销较少,具有较好的规模增长性。

全文