摘要
为获取样本的多样性特征,提出了一种改进的卷积神经网络结构。该网络中引入多层递归神经网络,利用卷积神经网络提取输入图像的浅层特征,同时利用卷积神经网络和递归神经网络并行提取高层特征,最后将两种网络学习到的特征进行融合输入到分类器中分类。利用迁移学习理论解决小样本集数据训练不足的问题,并将这种卷积神经网络结构应用于石油物资管线钢号识别中。实验探究了递归神经网络个数与卷积核个数对网络性能的影响,实验结果表明,改进的网络结构与其它网络进行对比,错误率降低了3%。
-
单位海洋石油工程股份有限公司; 东北石油大学