摘要
本发明公开了一种基于三边滤波和神经网络的红外图像非均匀性校正方法,依次载入原始红外图像序列中第n帧原始红外图像作为当前帧图像,确定当前帧图像的第i行第j列像元校正后的灰度值通过快速三边滤波算法对第n帧原始红外图像进行处理,根据当前帧的像元x邻域τ内的像素获得像元x的期望值qn(x),根据当前帧图像的第i行第j列像元x的期望值与第i行第j列像元校正后的灰度值之间的偏差,通过具有自适应性的迭代步长更新获得第n+1帧原始红外图像第i行第j列像元对应位置的像元增益参数和像元偏置参数通过像元增益参数和像元偏置参数对第n+1帧原始红外图像进行校正。本发明不仅能提高参数的学习速率,还能改善图像的非均匀性校正效果。
- 单位