摘要
针对轮胎制造过程质量异常的问题分析,介绍了轮胎质量数据获取、有效整合与数据分析流程,基于Hive数据仓库构建了生产数据与产品检测数据相关联的结构化数据集。针对现有频繁模式增长(FP-Growth)算法存在FP树建树性能较低与大数据处理效率低的问题,提出了一种改进的FPGrowth算法,在原有的频繁项头表基础上新增一个tail属性,加速FP树构建。实验结果表明,改进后的FP-Growth并行算法能够有效提高轮胎质量异常数据的关联分析效率,能够找出影响轮胎质量的生产制造重要因素,并且适用于大数据量的数据挖掘。
- 单位