摘要
藻类垂向分布异质性导致了遥感反演的湖泊表层叶绿素a浓度结果与单元水柱内藻类生物量间不存在一一对应的关系,因此有效确定藻类垂向分布结构是遥感反演湖泊藻类生物量的基础.受自身因素和外环境条件的影响,藻类垂向分布结构呈现出多种类型,其中高斯类型应用最广.本文基于3200组HydroLight模拟的高斯垂向数据构建BP神经网络,实现用MODIS数据相对应的3个波段的遥感反射比Rrs(469)、Rrs(555)、Rrs(645)和表层叶绿素a浓度共同估算高斯垂向分布结构参数h和σ.经巢湖地面实测数据验证显示,h和σ的估算值与实测值的相关系数分别为0.97和0.95,对应的相对误差分别为13.20%和12.36%,两者相对误差同时小于30%的占总数据量的87.5%,表明该BP神经网络估算巢湖藻类高斯垂向分布结构的有效性和准确性,为基于卫星遥感数据获取湖泊藻类生物量提供了重要的理论基础.
-
单位中国科学院; 淮阴师范学院; 中国科学院大学; 中国科学院南京地理与湖泊研究所