摘要

针对传统数据驱动模型存在收敛速度慢、过度拟合等问题,提出了基于极限学习机算法的基坑地表沉降预测方法。结合季冻区地铁车站基坑的特点,提取基坑开挖时间、开挖深度、围护桩顶位移、围护桩内力、支撑轴力及地表温度等特征信息,建立极限学习机回归预测模型,选用实例数据进行算例分析,并将其与传统回归预测模型进行对比,实验结果表明,极限学习机模型收敛速度快,泛化能力强,其预测精度优于传统预测模型,且在学习速度方面优势明显,对深基坑安全监控有一定的实用价值。