摘要
为了提高交通标志图像识别的准确性和实时性,提出一种基于图像聚类的交通标志CNN快速识别算法。利用图像聚类算法对原始数据集进行样本优化;采用多种图像预处理操作使样本整体质量进一步提升;构造了深度为9的CNN结构,通过多次训练得到最终的网络模型,将待识别的图像输入到CNN模型来实现自动识别。在德国交通标志数据集(German traffic sign recognition benchmark, GTSRB)和比利时交通标志数据集(Belgium traffic sign dataset, BTSD)上证明了算法的有效性,单张图片的识别速度只需0.2 s,识别精度高达98.5%以上。本算法具有识别速度快、准确率高的特点,可为智能驾驶的可靠性和安全性提供理论依据和技术支持。
-
单位桂林电子科技大学; 自动化学院