摘要

针对网络异常流量检测问题,文章提出一种基于网络流量特征属性信息熵的异常流量检测方法。该方法首先计算描述网络流量特征变化的源端口号、目的端口号、源IP地址和目的 IP地址这4种特征属性信息熵,并进行归一化处理,降低异常样本数据对分类性能的影响;然后利用自适应遗传算法对支持向量机分类器的惩罚参数和核函数参数进行优化,提高分类器泛化能力,同时改进遗传算法的交叉算子和变异算子,减少支持向量机分类器的训练时间;最后通过训练好的支持向量机分类器识别4种流量特征属性信息熵的变化以实现网络异常流量检测。仿真实验表明,该方法提取的4种流量特征属性信息熵能够有效表征异常流量变化,在多种异常流量类型条件下,具有较高的异常流量识别率和较低的误判率,且检测方法的鲁棒性较好。

  • 单位
    空军工程大学; 空军工程大学信息与导航学院