摘要
河湖水域岸线管控是河湖长制的重要内容,实施长江十年禁渔以来,长江岸线的非法捕捞行为屡禁不止,应用卫星-无人机-地面视频监控等遥感手段联合进行岸线禁捕场景识别成为趋势。为了实现对禁捕中垂钓行为的快速智能化精确检测,采用深度学习方法,利用Microsoft Common Objects in Context(COCO)数据集训练出一个具有较强特征提取能力的预训练权重,借助迁移学习的思想解决了目前禁捕场景样本量少的问题。为了增强对小目标的检测效果,在目标检测网络YOLOv3的基础上添加多个注意力机制模块,形成改进后的网络模型YOLOv3-CBAM。实验结果表明:YOLOv3算法采用迁移学习的训练策略,可以加快模型的收敛速度,提高模型的识别精度,将精度从78.57%提升至93.27%;添加注意力机制模块之后,在模型参数几乎不增加的情况下,识别精度又可提升到93.99%。研究成果可为长江流域禁捕垂钓的实时动态监管提供技术支持。
-
单位河海大学; 中国科学院