摘要
为进一步提高冬小麦单产的估测精度和验证粒子滤波算法在同化研究中的适用性,以陕西省关中平原为研究区域,以叶面积指数(LAI)和条件植被温度指数(VTCI)为同化系统的状态变量,采用重采样粒子滤波算法同化CERES-Wheat模型模拟的与遥感数据反演的LAI和VTCI,并依据在不同类型样点应用最优同化LAI和VTCI构建的单产组合估测模型对2008—2014年冬小麦单产进行估测。结果表明,同化LAI具有良好的时间和空间连续性,可减缓CERES-Wheat模型模拟LAI的剧烈变化,其峰值出现时间与遥感LAI变化趋势基本同步,更加符合关中平原冬小麦实际变化情况;同化VTCI能同时表达模型模拟值和遥感观测值的变化趋势,且更能反映冬小麦对水分胁迫的敏感性。比较不同类型样点基于不同同化变量建立的估产模型,发现在旱作样点,同时同化VTCI和LAI的单产估测结果(R2=0.531)优于单独同化VTCI(R2=0.475)或LAI(R2=0.428)的估测结果,且同时同化VTCI和LAI与实测产量间相关性达极显著水平(P<0.001);而在灌溉样点单独同化LAI的估测结果精度最高(R2=0.539),同时同化VTCI和LAI的估测结果次之(R2=0.457),单独同化VTCI的估测结果较差(R2=0.243)。表明在旱作样点,冬小麦叶面积指数和水分胁迫是影响其产量形成的主要因子,而在灌溉样点,叶面积指数是影响冬小麦产量形成的主要因子。
-
单位中国农业大学; 陕西省气象局