摘要
传统的加权K最近邻算法中以距离作为权值,随着数据维度的增加,计算距离与真实距离的误差越来越大。针对这一问题,提出了一种贝叶斯后验概率的加权K最近邻算法——贝叶斯后验概率(Bayes ian Posterior Probability-Weighted K-Nearest Neighbor,BPP-WKNN)方法。首先用支持向量机算法分类选取测试点的近邻指纹点,其次计算测试点到每个近邻指纹点的贝叶斯后验概率,最后以贝叶斯后验概率的大小作为权值进行BPPWKNN算法定位。实验果表明:与基于曼哈顿距离的加权K最近邻算法和基于欧氏距离的加权K最近邻算法相比,改进后的BPP-WKNN定位算法的定位精确度和稳定性更高;利用支持向量机算法的稀疏性定位完成时间分别缩短了49%与42%。
-
单位西安邮电大学; 电子工程学院