摘要
在昂贵多目标优化问题中,常采用代理辅助进化算法以减少真实目标函数的评估次数,但传统的代理辅助进化算法因代理模型计算复杂而运行时间较长.为缩短运行时间,提出基于双分类器辅助进化的多目标优化算法(DC-MOEA),利用两个随机森林分类器,分别预测解的多样性优劣和解的收敛性优劣,选出同时具备优秀收敛性和多样性的解进行真实评估和环境选择.DC-MOEA对决策变量分类并用分类后的数据训练分类器,降低整体复杂度,减少运行时间.通过仿真试验,利用基准测试函数比较在不同问题上的性能,验证本算法在多样性探索和收敛性增强方面的能力.
- 单位