摘要
为了提高旅游景点客流量预测准确性,提出了基于数据挖掘的旅游景点客流量预测模型。首先采集旅游景点客流量历史数据,然后通过引入混沌算法构建了旅游景点客流量预测的学习样本,最后引入数据挖掘技术对旅游景点客流量预测进行建模,并引入粒子群算法对旅游景点客流量预测模型参数进行优化。与粒子群算法优化BP神经网络的、支持向量机的旅游景点客流量预测模型的仿真对比测试结果表明,本文模型可以更加准确描述旅游景点客流量变化特点,旅游景点客流量预测误差远小于对比模型,获得了理想的旅游景点客流量预测预测结果。
- 单位