摘要
为提高克里金模型的建模精度,提出了一种基于天牛须(BAS)搜索粒子群(PSO)优化的改进克里金模型算法。在引入的天牛须搜索PSO优化算法中,每个粒子的更新规则不仅依赖于PSO最佳方案及个体的当前全局最优值,还综合了BAS的搜索规则,以提高全局搜索性能及搜索效率。由于相关参数的取值直接影响克里金模型的建模精度,应用天牛须搜索PSO算法对克里金模型的相关参数进行优化,并给出了具体的优化流程。测试算例表明,基于天牛须搜索PSO的改进克里金模型,具有得更高的模型精度和计算效率,优于常规的克里金算法及普通粒子群优化的克里金算法。
- 单位