摘要
针对目标检测中小目标特征提取能力不足及检测精度不高等问题,提出一种面向偏振成像小目标检测的YOLOv5改进方法,该算法输入端采用偏振度图像,提高目标物体与背景对比度;减少C3模块数量,保留高频信息的同时提取更多的浅层特征信息;在主干网络中加入坐标注意力机制,增大目标物体的特征信息的权重;优化边界框回归损失函数,解决训练时梯度消失等问题。将改进后算法应用在光伏组件表面落叶检测中,检测结果表明,其准确率、召回率和平均精度均值分别提升了0.59%、1.93%、0.36%,该算法针对小目标特征提取能力有所提升且检测精度更高。
- 单位