摘要

多实体情感分析旨在识别文中的核心实体并判断其对应的情感,是目前细粒度情感分析领域的研究热点,长文本多实体情感分析的研究处于起步阶段。论文提出一种基于多任务联合训练的长文本多实体情感分析模型(PAM),首先采用TF-IDF算法提取文章中与标题相似的句子,剔除冗余信息以缩短文本长度,通过两个BiLSTM分别进行核心实体识别和情感分析任务的学习,获取各自需要的特征,然后利用融入相对位置信息的多头注意力机制将实体识别任务学习到的知识向情感分析任务传递,实现两个任务的联合学习,最后利用论文提出的Entity_Extract算法根据实体词在文本中出现的次数和先后位置从模型预测的候选实体中确定核心实体并获取其对应的情感。在搜狐新闻数据集上的实验结果证明了PAM模型的有效性。