摘要
为了提升采煤机摇臂齿轮故障诊断准确率、减小模型尺寸且方便部署到更多移动端与边缘设备上,搭建了基于轻量化密集连接卷积网络(LW-DenseNet)的采煤机摇臂齿轮故障诊断模型。采用可分离卷积代替传统卷积减少模型参数,提高诊断效率;通过密集连接机制增强特征传播,加强特征提取能力。利用采煤机摇臂加载试验台采集的摇臂齿轮振动信号进行训练并验证模型的有效性。实验结果表明,与多种诊断模型比较,所提方法仅以0.05 MB的模型大小即可达到99.276%的分类精度,并利用凯斯西储大学轴承数据集验证了模型具有良好的泛化性。最后对关键层利用t-SNE进行可视化表示,清晰地展现了模型良好的特征提取性能。
-
单位太原理工大学; 山西太钢不锈钢股份有限公司